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Abstract

In this study, a higher-order impact model is presented to simulate the response of a soft-core sandwich beam sub-
jected to a foreign object impact. A free vibration problem of sandwich beams is first solved, and the results are vali-
dated by comparing with numerical finite element modeling results of ABAQUS and the solution by Frostig and
Baruch [Frostig, Y., Baruch, M., 1994. Free vibration of sandwich beams with a transversely flexible core: a high order
approach. Journal of Sound and Vibration 176(2), 195-208]. Then a foreign object impact process is incorporated in the
higher-order model, and the contact force and deflection history as well as the propagation of transverse normal, shear,
and axial stresses during the impact are analyzed and discussed. The validity of the model in the impact response pre-
dictions is demonstrated by comparing with finite element solutions of LS-DYNA. The calculated stresses caused by a
foreign object impact are then used to assess failure locations, failure time, and failure modes in sandwich beams, which
are shown to compare well with the available experimental results. The effects of impact mass, initial velocity, core stiff-
ness, and core height on the impact stresses generated in the beams are discussed. The influences of impact mass and
initial velocity on the contact force history are close to those by the linearized impact solution, but the proposed higher-
order impact model captures the non-linear impact process and different generated stresses. Compared to the fully
backed sandwich case, the core height shows a great influence over the impact process of a simply supported sandwich
system, in which the global behavior of the sandwich is dominant; while the core stiffness shows minor effect over the
impact process. The higher-order impact model of sandwich beams developed in the study provides accurate predictions
of the generated stresses and impact process and can be used effectively in design analysis of anti-impact structures
made of sandwich materials.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Sandwich panels are commonly made of soft core in the form of foams or non-metallic light honeycombs
that are flexible in the through-the-thickness direction, and they are prevalently used in structural applica-
tions due to weight reduction and promising high-energy absorption. The concentrations of transverse nor-
mal and shear stresses between the skins and core, caused by impact of foreign objects, such as a drop
weight, are very important in the case of sandwich panels with a “soft” compressible core. These stress con-
centrations in sandwich structures could lead to premature failure at load levels much lower than the pre-
dicted failure load determined using classical theories. The flexibility of the low-strength core affects the
overall behavior of sandwich structures and prompts stress concentrations in the vicinity of localized loads
and at the skin—core interfaces. It yields unequal deflection patterns in the upper and the lower skins as
compared to the panels having traditional metallic anti-plane incompressible core, in which the in-plane
stresses can be ignored, the transverse shear stress are independent of the vertical coordinate z, and the
rigidity in the vertical direction can be considered as infinite (Allen, 1969). A number of theories have been
discussed to solve this problem. The traditional elastic foundation models (Thomsen, 1995) were the earliest
ones, which could take account of the core deformation and capture the local bending effect. However they
neglect the interaction between the shear and the normal stresses within the core required by the equilib-
rium conditions. Among all the theories, the higher-order sandwich theory developed by Frostig and his
coworkers (Frostig et al., 1992; Frostig and Baruch, 1994, 1996; Frostig and Shenar, 1995; Frostig and
Thomsen, 2004) and Sokolinsky and Nutt (2002, 2004) were the most promising ones, in which they as-
sumed that the in-plane displacement of the core is non-linear, i.e., the plane section of the core no longer
needs to remain as a plane after deformation, and the height of the sandwich could be compressed and
extended.

Even though a lot of work has been done to capture the local effects of loading and supporting boundary
of a static problem, the dynamic problems associated with these local effects have not been discussed. In
particular, the impact damage of sandwich structures due to a drop weight has not been fully analyzed,
which is actually very important in utilizing these sandwich systems properly. The impact over sandwich
systems was first analyzed by Lee et al. (1993). In their study, an anti-plane sandwich theory was used,
and the transient contact force and central deflection histories were analyzed. Tsai et al. (1998) also con-
ducted a study about the impact analysis of a linear sandwich system, and a linear distribution of the
in-plane as well as the vertical displacements was assumed; but their model is still a classical model, which
could not guarantee the continuity of stresses over the skin—core interfaces, which also raises the question of
the equilibrium of stresses in the core. Qiao et al. (2004) recently presented an I-Lam (Impact Laminate)
sandwich system as a collision protective structure for highway bridge girders subjected to underneath
over-height trucks impact and developed a closed-form solution for a sandwich beam on a Winkler foun-
dation over impact considering the shear-off effect of truck over-height material. Yang and Qiao (2005) also
developed a theoretical model for a fully-backed sandwich plate using a two-parameter elastic foundation,
and the damage generated by foreign object impact was discussed in detail considering the effects of mass,
initial velocity and projectile tip shape. Most recently, Qiao and Yang (2004) further proposed a semi-ana-
lytical model for an anti-plane sandwich plate sitting on a solid half space, and the transferred force distri-
butions as well as impact response were studied.

In this study, the impact analysis of sandwich beams based on a higher-order sandwich theory is con-
ducted. A higher-order sandwich theory incorporating the impact process is used to study the local deflec-
tion and stress concentration effects of the impact. By excluding the assumptions of linearly distributed
displacements (or core’s plane sections remaining plane after deformation), both the continuity of stresses
over the skin—core interface and the normal compression of the core are taken into consideration, and the
stress concentration and stress wave propagation caused by the impact process are analyzed. The transient
impact response of the sandwich system is studied, and the dynamic effect of core and various transient
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stresses under impact, which are needed to assess the failure time, locations and modes in a sandwich sys-
tem, are discussed in detail.

2. Theoretical formulation
2.1. Dynamics of a sandwich beam system

First, consider a sandwich beam based on the plane stress conditions (in the xz plane) and the coordinate
system given in Fig. 1, the equation of motion of a sandwich beam is given as
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where, wy, we, and wy, are the vertical displacements of the top face sheet, core material, and bottom face sheet,
respectively; u, u., up, are the horizontal displacements of the top face sheet, core, and bottom face sheet; 7.,
0., 0. are the components of a stress tensor at a point (7 is later used in this paper instead of ¢¢, for simplic-
ity), and the subscripts t, ¢, and b represent the top face sheet, core, and bottom face sheet, respectively; and
P, Pe, and py, are the material density of the top face sheet, core material and bottom face sheet.

2.1.1. Model A: Without the dynamic effect of core

In many sandwich systems, the core is designed to be light compared to that of the face sheets, which
makes the mass inertia of the core material much less than that of the face sheets and sometimes can be
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Fig. 1. The coordinate system of sandwich beam: (a) geometry and coordinates, (b) internal resultants and stresses.
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omitted. Most of core materials in sandwich construction are made of either low density foams or honey-
comb structures, and for simplified analysis, the dynamic effect (i.e., the horizontal and vertical vibration)
of the core is often not included. Model A is designed for this type of sandwich beams that the dynamic
effect of the core is neglected. Integration of the equations for the face sheets in Eq. (1) yields

a t
A OLlnz=h/2) — o (x,z = —/2) =0
oM 00, h /2 *w,
UM _ 2 ot - _ 2 xz_t: t
Gt oLnz = /) —oiloz=—h) == [ e
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where N, and M, are the axial force and moment per unit width; 4, and Ay, are the thickness of the top and
bottom face sheets, respectively.

Integration of the fourth equation in Eq. (1) and neglecting the dynamic effect of the core material
(Frostig et al., 1992) yield,

0. =—1,z2+ 06 (x,z=0) (3)
Using the constitutive law of the core material,
G;z = EC8§z (4)
and considering Eq. (3), we obtain
2 o (x,z=0
We = ThoR, %Z o ©)

Substituting in the continuity condition across the bottom interface,
2 c
c s (x,z=0
+ ZZ( )

Mo = Tanp o ctwm (6)
we derive,
— w)E.
o (x,z=0) = M + 1.5 (7)

Then, based on the shear compatibility equation,

Ouc  Owe 1
Vz _g—"_ ox - Gc (8)

Integration of Eq. (8) yields,
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Considering the continuity condition across the bottom interface for the horizontal displacement, we

obtain,
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where b is the width of the beam; ¢ is the height of the core material; ugy, and ug are the horizontal displace-
ments of the top and bottom face sheets at their respective neutral axes.
The constitutive equations of the face sheets (including the bending—stretching coupling effects) are,

Ny = Anuoy — Buiw
(11)
M, = Brnugx — Dywa
where 41, By, and Dy are the extensional, extensional-bending coupling, and bending stiffness of the face
sheet laminate, respectively.
Further, consider the top and bottom face sheet boundary conditions,
o (x,z=—h/2)=0, o (x,z=h/2)=1, d . (x,z=—h/2)=—q,

o (x,z=h/2) =d%(x,z=0), oo(x,z=—hy/2) =1, o>(x,z=hy/2) =0, (12)
o (x,z=—hy/2) =S (x,z=¢), oo(x,z=hy/2) =0

zz zz

where ¢, is the external load acting on the top face sheet.
Finally, the governing equations for the dynamic behavior of sandwich beams according to the higher-
order theory, in which the dynamic effect of the core is neglected (Model A), are summarized as
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2.1.2. Model B: Including the partial dynamic effect of the core

If the density of the core can not be neglected, the dynamic effect of the core material should be included.
However, the horizontal vibration and rotatory inertia of the core and the face sheets are still not taken into
consideration. Integrating the fourth equation in Eq. (1) results in,

z 2 z
ot (x,z):/ pcawC dzf/ 1,dz+ ¢S (x,z=0) (14)
zz 0 atz 0 » zz

Using the assumption that the acceleration of the core can be approximated by a linear interpolation of
the top face sheet and the bottom face sheet accelerations (Frostig and Baruch, 1994), we have

(W — vir)

c Z+‘.4./1 (15)

We (X,Z, t) -
The displacements of the top and bottom face sheets are very close at any transient time; therefore, a linear
approximation in Eq. (15) could be a good approximation.
Integration of Eq. (14) results in,
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From the constitutive law of the core material (see Eq. (4)) and satisfying the continuity for the bottom
interface, the following compatibility condition is obtained

Wt+v“vi—cwt%&+g§jwt_%%2+4o°(x;c= 0~ w, (17)
Further, solving for the stresses inside the core in terms of wy, wy, and 7 yields

o (x,z=0) = (v, _th)Ec _ Oy ; i) peC — %pcwtc + fx%
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Then the governing equations for the dynamic behavior of sandwich beams according to the higher-or-
der formulation, in which the partial dynamic effect of the core is considered (Model B), are summarized
as,
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2.1.3. Model C: With the full dynamic effect of the core

In Model C, the full dynamic effect (i.e., besides the mass inertia of the core, both the horizontal vibra-
tion and rotatory inertia of the core are also included) is considered in the analysis. By using the equilibrium
condition given in Eq. (1) and assuming that the in-plane stress of the core is relatively small (in this study,
it is assumed to be zero) and that the shear stress is constant over the thickness of the core, the horizontal
and vertical accelerations of the core can be approximated by a linear interpolation from those of face
sheets (Frostig and Baruch, 1994) as

ie(x,z,t) = Mz + il

¢ (20)

. (W — W)

Welx,z, 1) = . Z 4y

where u,, uy,, wy and wy, are the top and bottom interface horizontal displacements and the top and bottom
interface vertical displacement, respectively.
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Integrating the third equation in Eq. (1) and considering that the in-plane stresses do not exist in the core
and the shear stress t does not change over the height, we have

/cpcilc(x,z,t)dz:0 (21)

top
s-bot —uy

Substituting iic(x,z, 1) = “—"—z 4+ i into Eq. (21), we derive,
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™
From the fourth equation of Eq. (1),
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Using the constitutive law of the core material in Eq. (4) and satisfying the continuity conditions for the
bottom interface, we have
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Further, considering the continuity of the horizontal displacements across the bottom interface,
Ou, 0w, T

C c _ . 26
= T TG (26)

Ou, Ow,
i A (27)

oz G. x
and integrating Eq. (27), we obtain
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where 7,. is the shear strain in the core.
Satisfying the displacement continuity across the interface of the core and the bottom face sheet, we
have,
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Finally, the governing equations for the dynamic behavior of soft-core sandwich beams according to
the higher order theory and with full consideration of dynamic effect of the core (Model C), are summarized
as,

b b
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2.2. Dynamics of the projectile

2.2.1. Point load—effect of concentrated force
In this study, it is assumed that the vibration of the projectile can be neglected. The Hertzian contact law
(Abrate, 1997) is adopted,

F(1) = Ko? (32)

where « is the relative indentation between the projectile and the plate, and K. is the Hertzian contact stiff-
ness defined by,

K. = gEzz\/i_e (33)

where E», is the transverse Young’s modulus of the face sheet and R is the radius of the projectile tip. In Eq.
(33), E33 should be used instead of E»,. However, for the general composites (e.g., unidirectional compos-
ites), Es3 is equal or close to E,,. Thus, as an approximation, E,, is used in this study.

The relative indentation o is defined as,

a:%_w(g_%) (34)

where w, denotes the displacement of projectile, and w(a/2, —h/2) is the transverse displacement of the top
face sheet at the impact location. In this study, « can be a distributed indentation according to the shape of
projectile tip (Yang and Qiao, 2005).

Then the equation of motion for the projectile can be written as,

m, + F(t) =0, w,=0, w, =1 (35)
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where m is the mass of the projectile, wy, is the displacement of the projectile, and F(¢) is the contact force
between the projectile and the sandwich panel.

2.2.2. Patch load—effect of distributed force
Based on Herztian contact stress distribution, a distributed load like a parabolic function is
assumed,

N 172
g(x.1) = Polt) (1 - (‘—)> (36)
a(t)

where xg is the coordinate of the first contact point, Py(¢) is the maximal value of the distribution, ¢(x, ?) is
the distributed force generated by a foreign object impact.
The contact force p is accounted for by solving Hertz’s problem, and given as

p = ka? (37)
2\ —1/2 2 _ . .
where k£ = (% (01;0) ) , 0= 4<IEI‘ L , 0= it E“ 2), E, i are the Young’s modulus and Poisson’s ratio of the

indenter material, and E, y; are the similar material properties of the first top layer of the face sheet lam-
inate, p is the resultant contact force.
Then, Py(?) can be solved by integrating the above equation,

3 »p
P =3 2 <o (38)
where a(f) = \/a«(2R — a), a(t) is the contact radius.

2.3. Sandwich beams under simply supported boundary condition over impact

In this study, a sandwich beam with simply supported boundary conditions is considered, and the Ray-
leigh—Ritz method is used to solve the proposed models A to C as given in Section 2.1.
Assume the shape functions for displacement and shear stress as

wi(x,£) = C,(7) sin (”LE)

wy(x, 1) = Cy(7) sin (?)
o (x, 1) = Cut(£) cOS (”Lﬂ) (39)

o (x, 1) = Cup (1) cos (”Lﬂ)

t(x, ) = C.(t) cos (?)
where C(¢), Cyp(?), Cui(t), Cup(?), and C(¢) are the amplitude for each vibration mode.

The external force can be assumed as
nmx

F(x,) = O(¢) sin (T) (40)

where Q(¢) is the forcing component for each vibration mode. Then, the governing equations for the afore-
mentioned models (A to C) are obtained as follows.
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Fig. 2. The physical model of a sandwich beam.
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The governing equations for Model A, in which the dynamic effect of the core is neglected, can be written

in the matrix form as,

[Py P, 0 0 O] [ C(r) Fi Fp
P Pyn 0 0 O Cy(r) Fio Fp
0 0 0 0 0]]Cu® Fiz 0
0 0 0 0 0] 0 Fu
L0 0 0 0 0f][ Cin) ] L Fis Fas
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Fig. 5. Eigenmodes of the symmetrical sandwich beam with n =1 (Model C): Mode number and dimensionless frequency ((¢) w,, (H)
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Table 1

Comparison of frequencies of the proposed three models with the results from the finite element analysis by ABAQUS and Frostig and
Baruch (1994)’s model

Wave no.  Model A Model B Model C Frostig and Baruch (1994) ABAQUS
n=1 362.96/7587.43  326.39/7304.78  325.98/4767.31/6769.24/7304.79 325.98/4287.00/6518.11/7304.78 349.86
n=2 918.50/7587.47  825.96/7304.85 824.96/7304.85/9534.62/10674.70  825.30/7304.80/8574.00/10278.70 777.42
n=3 1457.84/7587.70 1301.96/7305.05 1308.90/7305.05/14301.90/15080.00 1310.38/7305.01/12861.00/14520.40 1221.21
n=4 1979.78/7588.28 1780.31/7305.53 1776.11/7305.63/19069.30/19652.80 1779.83/7305.53/17148.00/18923.40 1657.33
n=>5 2488.07/7589.56 2237.38/7306.85 2229.62/7306.85/23836.60/24299.00 2237.02/7306.71/21435.00/23396.70 2089.55
where
bEc bDlltn47r4 bEc bB]11n37'E3
Fy = C+T, F12=—C, F13:_T7 Fiy=0
benm bdinm bE. bDjpn*nt bB 1’1}
Fis=——+—F—, Fan= t+—a— Fu=—""7—
2L 2L c L L
benm bdbl’lﬂ bA]]tllzTEz bA]]b}’lzTL'z
Frs=——4+— F3y3=——— Fys=—-b, Fyy=—->—
25 2L 2L ) 33 L2 ) 35 ) 44 L2
be  be*ntn?
Foys=b, Fss=————-—, Pu=phb, Py=phb, P;=0
) Gc 12ECL2’ PrD, Po ’
LS-DYNA USER INPUT

Time = 0.0035975

Fig. 6. The LS-DYNA finite element modeling of a sandwich beam.
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Reducing the equations using the relationship between the last three rows in the matrix, Eq. (41) was

reduced to,
|:P11 Plz] Ci(1) n [Kll Ku} {Ct(f)} - {_Q(t)} (42)
Py Pnl| Cylr) Ky Kxnl[Cu(t) 0
where
Ki = Fy + —F1F33F sy + 2F 13F \sF35F gy + F1,F s — F1yF44Fas
F33FuFss — FisFay — F3F g
K — Fry 4+ —F15F s F33F 4y + F13F25F35F 44 + FisFouF33F s — Fi3FouF35F 45
n=Fp
F33FuFss — FisFay — F33F g
Ky = Fyy + F3,F3s — F3sF33Fay + 2F 4 F>sF33F s — F3,F33F ss

F33FyuFss — F3Fay — F33Fog
By combining Eq. (42) with the equation of motion of the projectile,
mwy, + F(x,t) =0 (43)
the governing equations can be established.
The equations (Egs. (42) and (43)) can be solved simultaneously, and the corresponding transient re-

sponse and other terms, like the transverse normal stresses over the interfaces, bending moments, and axial
forces in the two face sheets as well as the deformation pattern in the core can be obtained.

2.3.2. Governing equations for Model B
Similarly, the governing equations for Model B, in which the partial dynamic effect of the core is in-
cluded, can be written in the matrix form as,

e wllan] L el =9 “

where P|, = phb +1p.ch, P, =¢p.ch, Py = pyhob +%p.ch.

2.3.3. Governing equations for Model C
Finally, the governing equations for Model C, in which the dynamic effect of the core is fully considered,
is given as
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Fig. 14. The residual velocity history under three different impact masses.
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Fig. 15 (continued)

2.3.4. Mode summation and solution procedure

In order to approximate the vibrating state of the sandwich beams under impact, the vertical and hor-
izontal displacements of the face sheets as well as the shear stress of the core are represented by mode sum-
mation using the normal modes discussed in Eq. (39) as,

wi(x, 1) = XN: Cpe(1) sin (?)

wp(x,7) = i Co(t) sin (?)
wi(x, 1) = lej Coua(t) sin (%)
o (x, 1) = zi: Coun () cOs (”LE
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A standard modal analysis can be used, and it yields,

Cou(t) Cu(t) [—0,(1) ]

Cop(?) Cu(2) 0

Coat) | + 03] | Coua(r) | =] 0O (47)
Coun (1) Cun (1) 0

L Coe (1) ] LG ()] L 0

where w, is the natural frequency for each vibrating mode.
For an N mode approximation, Eq. (47) can be combined with the equation of motion of the projectile
(Eq. (43)) and solved by the numerical time integration.

3. Higher-order free vibration analysis

The three aforementioned models (Models A to C) are used to study the free vibration behavior of
the sandwich beams, and the validity of the models is demonstrated by comparing with numerical

2.0E+07

1.0E+07
0.0E+00 §
-1.0E+09' 420
-2.0E+07

-3.0E+07

-4.0E+07

stresses (Pa)

—+—m=250g, Top nleriace
—=—m=250 g, Bottom interface
— 4= -m=500 g, Top inlerface

m =500 g, Bottominterface
—=—m=1000 g, Top interface
—e—m=1000 g, Bottom interface]

-5.0E+07

Maximal transverse normal

-6.0E+07

-T.0E+07

-8.0E+07

_—
2]
~—

Time (s)

0.30

m=250g
— —m=500g
m = 1000 g

0.25 A

0.20 1

—— e — o

0.05 1

Locations of maximal transverse normal
stresses (m)
o
o
N
AN = T

0.00 T T T
0.000 0.005 0.010 0.015 0.020

(b) Time (s}

Fig. 16. Maximal transverse normal stresses and their locations at the interfaces under three different impact masses. (a) Maximal
transverse normal stresses at the two interfaces. (b) Locations of the maximal transverse normal stresses happened at the top interface.
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results obtained from finite element simulations using ABAQUS and the solution by Frostig and Baruch
(1994).

The physical model of a sandwich beam is shown in Fig. 2, with the labeled material and geometrical
parameters. The mechanical properties of the face sheets correspond to a quasi-isotropic glass-ceramic
composite with a density of 4400 kg/m>; whereas those of the core correspond to an isotropic polymeth-
acrylimide rigid foam with a density of 52.06 kg/m>. In the later impact analysis (see Section 4), the pro-
jectile hits the sandwich beam from the top.

3.1. Natural frequencies and mode shapes

The two eigenmodes corresponding to the first wave number (i.e., n = 1) are shown in Fig. 3. The
eigenfrequencies are presented in a non-dimensional form relative to the eigenfrequency of 451.053 Hz
for an ordinary beam having the same mass and total flexural rigidity. In the first mode (rn=1), the
anti-symmetric mode, in which the two skins move vertically in the same direction with the same amplitude,
corresponds to the lower frequency; while the symmetric mode corresponds to the higher frequency, in
which the two skins move vertically in the opposite direction with the same amplitude. Because the vibra-
tion of horizontal displacement is neglected, the modes for the horizontal displacements do not exist in
Model A.
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Fig. 17. Maximal shear stresses and their locations in the core under three different impact masses. (a) Maximal shear stresses in the
core. (b) Locations of the maximal shear stresses.
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The two eigenmodes for Model B corresponding to the first wave number, n = 1, are shown in Fig. 4.
Similar to the eigenmodes of Model A, the same mode shapes are generated by Model B, but with different
natural frequencies. Again, since only the core mass is included in the analysis, the modes for the horizontal
displacements do not exist for model B either.

The four eigenmodes for Model C corresponding to the first wave number, n = 1, are shown in Fig. 5.
Because the vibrations corresponding to horizontal displacements are considered in Model C, the modes for
the horizontal displacements are included. Compared with Models A and B, this model captures the whole
picture of the vibration of sandwich beams.
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Table 2

Quasi-static strength data of a sandwich system with woven roving prepreg face sheet and honeycomb core (Mines et al., 1998)
Strength o1(t) o1(—) oo t) o2 —) Opeel O13f 023¢
Data (MPa) 270.0 200.0 270.0 200.0 4.0 22 1.5

Note: +/— sign symbols tensile/compression strength; o3¢ and a,3¢ are the core transverse shear strengths; o, is the peeling strength
at the interface; E;; = E», = 20.0 GPa for the face sheet material; and E. = 0.000947 GPa, G. = 0.440 GPa for the core material.
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3.2. Validation of the models

In this section, the above theoretical models are compared with numerical results obtained from the fi-
nite element analysis using ABAQUS and the high-order free vibration solution by Frostig and Baruch
(1994). The comparisons of the frequencies among various models are listed in Table 1.

As shown in Table 1, Model C can predict the natural frequencies more accurately; while Models A and
B also provide a close estimation of all the natural frequencies, corresponding to the symmetric and anti-
symmetric modes. The model by Frostig and Baruch (1994) can be simplified considering the assumption
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Core shear failure Tensile axial failure

Fig. 19. The predicted failure locations and failure modes.
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used in their paper, in which the relation of Eq. (22) was not used. From Table 1, it indicates that the effect
of rotatory inertia and horizontal vibration is very small compared to the other factors. Neglecting the
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Fig. 22. Residual velocity history under different initial impact velocities.
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dynamic effect of the core material (i.e., in Model A) introduces about 10% error in the first lowest natural
frequency. It is also interesting to note that inclusion of the rotatory inertia effect in Model C has a pre-
dominant influence on the third mode shape under the wave number n =1 (see Table 1), which makes
the uneven horizontal vibrations between the top and the bottom face sheets (Fig. 5(c)). The relatively close
correlations between the natural frequencies of the three proposed models with the finite element results
and the solution by Frostig and Baruch (1994) demonstrate the validity of the higher-order sandwich beam
model proposed in this study, which will be next used in impact analysis.

4. Impact analysis of the symmetric sandwich beams

Based on the results shown in Table 1, Model B can be used with confidence to predict the free vibration
of a symmetric sandwich beam, and it is chosen as a representative model in the impact study. A series of

parametric studies are conducted considering various factors, such as impact mass, initial velocity, core
height and core stiffness.

4.1. Numerical validation of the theoretical model

In order to validate the theoretical model, a LS-DYNA finite element simulation of a sandwich beam
shown in Fig. 6 is set up and analyzed. The energy vs. time history in the system is shown in Fig. 7, and
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(a) Maximal shear stresses in the core. (b) Locations for the maximal shear stresses happened in the core at each time step.



M. Yang, P. Qiao | International Journal of Solids and Structures 42 (2005) 5460-5490 5483

it indicates that the energy in the system is conservative and the sliding energy is close to zero. Therefore,
the finite element model is well designed for the validation.

The contact force history, central displacement history, and residual velocity history as well as the max-
imal axial force history obtained with the proposed model (Model B) and the LS-DYNA simulations are
compared, and the comparative results are shown in Figs. 8-11, respectively. From all the comparisons, it is
noted that the proposed theoretical model captures the contact force history and the contact duration very
accurately (Fig. 8), and the model also provided a close estimation over the maximal axial force history in
the top face sheet (Fig. 11). Therefore, it can be concluded that the theoretical model developed in this study
has comparable accuracy to the LS-DYNA simulation and can be used effectively in impact analysis and
design of sandwich structures.

4.2. Impact parametric study

In this section, a parametric study of a sandwich beam subjected to impact loading is conducted, and the
effects of varying the different parameters, such as impact mass, initial velocity, and core properties, on the
impact process are investigated using the proposed model (i.e., Model B).

4.2.1. Effect of impact mass
The mass of the projectile or impactor is an important factor affecting the impact process and the design
of a collision protective system. Applying Model B and using the same properties of the sandwich beam
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Fig. 25. Maximal axial force history in the two face sheets under different initial impact velocities. Maximal axial stresses history in the
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shown in Fig. 2, the effect of projectile mass is studied. Three different projectile masses of 300 g, 500 g, and
1000 g with a constant initial impact velocity of V= 3.0 m/s are considered in the analysis.

Based on the contact force history shown in Fig. 12, the contact force reaches the maximum when the
projectile mass is 1000 g, and the maximal contact force increases about 1.40 times each time when the
impact mass is doubled, which is close to the linear solution previously developed by the authors (Qiao
et al., 2004). Because the projectile introduces a complicated contact process with the sandwich beam,
the projectile keeps adjusting its contact with the sandwich beam and makes the contact force curve un-
smooth. From the deflection history of the sandwich system (Fig. 13), it is obtained that all the three pro-
jectile mass cases display as an undamped vibration state after the projectile leaves the sandwich beam
completely, and the core keeps extending and contracting at the different time states with the almost same
amplitude.

In Fig. 14, the residual velocity histories for the three cases of projectile masses are provided. Although
the three projectile mass cases almost arrive at the same residual velocity at the end, they reach to the resid-
ual velocities in different paths. Thus, the largest mass (i.e., m = 1000 g) produces the longest contact dura-
tion but the slowest de-acceleration because the largest mass impacts the sandwich beam with the highest
kinetic energy.

The drop weight always introduces barely visible impact damages (BVID) to the system, which makes
the stress analysis generated by a drop weight especially important. The proposed higher-order sandwich
impact theory offers the unique capability of analyzing the transverse normal stress (e.g., the peel stress)
between the two face sheet—core interfaces, the shear stresses in the core and in the face sheets, and the axial
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stresses generated in the face sheets, which are necessary in determining the failure modes as well as the
failure locations of a sandwich system subjected to foreign object (drop weight) impact. As an illustration,
the displacement and various stresses as well as the core compression generated at different times for the
case of m =500 g and V,, = 3.0 m/s are predicted by Model B and shown in Fig. 15.

To the three projectile mass cases discussed above, the maximal transverse normal stresses, the maximal
shear stresses as well as the maximal axial stress generated are plotted in Figs. 1618, respectively, from
which the locations of the maximal stresses corresponding to each time step are also shown.

Based on Fig. 16, the maximal transverse normal stress mostly occurs at the central span location of the
beam before the projectile is totally separated from the sandwich beam, but it propagates to other locations
as soon as the contact process is completed. As shown in Fig. 17, the maximal shear stresses mostly oc-
curred at x =0.12 and x = 0.18, which indicate the probable locations of core shear failure when the core
shear stress reaches the core shear strength. According to Figs. 17 and 18, the wave generated by the impact
can be interpreted as a combination of shear and axial stress components. Also from Figs. 17 and 18, we
note that the axial wave always propagates faster than the shear wave, and the increase of impact mass in-
creases the propagating velocity of the maximal shear stresses of the core as well as the axial stresses of the
face sheets in the sandwich beam (Note: The wave speed of propagation stresses is calculated by the time of
flight between two initial start peaks. From the variation of various stresses, the different propagating
speeds can be observed for different stress waves.)

Given the strength data of a sandwich system like these shown in Table 2, the corresponding locations of
the damages as well as the failure patterns can be derived based on the stresses calculated by the present
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model. Based on the predicted results from the present model, the various damages occurring at
t=0.15x 1072 is predicted when the sandwich system is subjected to an impact of a mass of 500 g. The
location for debonding of the top face sheet from the core occurs at the central location (Fig. 16). At
the same time, the core shear failure develops at about x = 0.120 m and 0.183 m (Fig. 17). The tensile fail-
ure is also observed at the bottom face sheet (Fig. 18). The failure pattern predicted by the present model is
very close to those given in the literature (Abrate, 1997; Mines et al., 1998), and the predicted failure pattern
is graphically illustrated in Fig. 19.

4.2.2. Effect of initial impact velocity

The initial velocity is also an important factor affecting the impact process and the design of a collision
protective system. Using Model B with the same sandwich beam as studied before (Fig. 2), the effect of ini-
tial velocities is studied. Three different velocities of 3.0 m/s, 6.0 m/s and 9.0 m/s are considered in this
study.

From the contact force history curves (Fig. 20), the contact force reaches its maximum when the velocity
is 9.0 m/s compared to the other two velocities, and the maximal contact force increases about 2.0 times
when the initial velocity increases from 3.0 m/s to 6.0 m/s and around 1.5 times when the initial velocity
raises from 6.0 m/s to 9.0 m/s, which is very close to the linear solution by the authors (Qiao et al.,
2004). The contact durations for these three velocities are very close to each other, which is similar to
the conclusion provided by the linear solution, i.e., the contact duration time is not related to the initial
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velocity, but to the impact mass (Qiao et al., 2004). However, the non-linear impact process and the un-
smoothed contact force history are captured by the present model (see Fig. 20).

From the deflection history of the sandwich system (Fig. 21), although the amount of the deflection is
different, the pattern of the deflection shape remains similar; because no matter what theory we employ,
the sandwich still behaves like a linear elastic system. It can also be observed from Fig. 21 that the higher
the initial velocity, the larger the deflection.

From the residual velocity history (Fig. 22), although the pattern of the de-acceleration is similar, the
highest de-acceleration is associated with the highest initial velocity, and it reaches the final residual veloc-
ities almost at the same time.

The stresses in the sandwich system under three different impact velocities are also studied. From Fig.
23(a), we note that the higher the initial velocity, the larger the transverse normal stress results. Most of
time, the maximal stress happens at the center location of the beam, but it can happen at other locations
as well (Fig. 23(b)). The top interface always generates a higher transverse normal stress, which makes the
top skin—core interface vulnerable to debonding.

From Figs. 24 and 25, we note that the higher the initial velocity, the larger the shear and axial stresses
become. Also the increase of initial velocities will increase the propagating velocities of the maximal shear
and axial stresses over the beam.

4.2.3. Effect of core height (h.) and core stiffness (E.)
The material properties of the sandwich system itself have a significant effect on the impact process, and
they are highly important in relation to the design of a collision protective system. Based on Model B and
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the material properties of the sandwich beam given in Fig. 2, the effects of core height and stiffness on the
impact process are investigated.

From Figs. 26 and 27, we observe that the core height /. has a prominent effect on the impact response of
the sandwich system. The increase of core height results in an increased peak contact force (Fig. 26(a)) and
a reduced center deflection (Fig. 27(a)) because the global bending and shear stiffnesses increase with the
increase of core height. The responses of the simply-supported sandwich system (Fig. 2) given in this study
are actually different from the fully-backed sandwich case discussed by the authors (Yang and Qiao, 2005).
The global behavior is dominant for a simply supported sandwich, while the local behavior is more prom-
inent for a fully-backed sandwich. Accordingly, the effect of core stiffness is also analyzed. An increase of
core stiffness increases the peak contact force (Fig. 26(b)) and reduces the deflection (Fig. 27(b)). The in-
crease of core stiffness shortens the contact duration (Fig. 26). However, this effect is less significant when
the core stiffness becomes larger. The residual velocity history of the projectile is shown in Fig. 28, in which
the core stiffness does not show much influence upon the residual velocities, while the core height does have
a predominant effect.

Considering the transverse normal, shear and axial stresses generated, the higher the core height, the less
these stress components (Figs. 29(a), 30(a), 31(a) and (b)). However, opposite to the effect of core heights,
the higher the core stiffness, the higher the transverse normal stress becomes (Fig. 29(b)). It is interesting to
note that the core stiffness does not show much influence on the maximal shear stress history (Fig. 30(b))
and the maximal axial stress history (Fig. 31(c) and (d)).
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5. Conclusions

In this study, a higher-order sandwich impact theory is presented, and a detailed study has been carried
out to discuss the free vibration as well as the foreign object impact problem of a sandwich beam with a soft
core.

The free vibration problem considering the dynamic effect of the core, horizontal vibration and rotatory
inertia is solved, and its solution is compared with the results of ABAQUS finite element simulations and
the model by Frostig and Baruch (1994). It indicates that neglecting the dynamic effect of the core intro-
duces about 10% error in predicting the first natural frequency, while including the rotatory inertia and hor-
izontal vibration does not improve the first natural frequency much.

The foreign object impact process is further analyzed, based on the proposed higher-order sandwich
beam theory. The effects of various factors, such as the projectile mass, initial impact velocity, core height
and core stiffness, are discussed. The transverse normal, shear and axial stresses generated by the impact
process are calculated as well and used to predict the failure patterns and locations. The parametric study
of various factors on the impact process shows that the effects of mass and initial velocity over the transient
impact response of the sandwich beam are close to those of the linear impact solution (Qiao et al., 2004),
but the present model is capable of capturing the non-linear impact process and unsmoothed contact force
history; while the core height produces a different influence on the transient impact response of the
sandwich beam compared to the fully-backed case (Yang and Qiao, 2005) due to its predominant global



5490 M. Yang, P. Qiao | International Journal of Solids and Structures 42 (2005) 5460-5490

behavior resulting from the simply-supported boundary used in the present model. The higher-order impact
sandwich theory proposed in this study improves the accuracy of sandwich analysis over impact and can be
used effectively as a versatile tool to analyze, design and optimize the collision protective sandwich
structures.
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